Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса icon

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса




НазваниеПримерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса
страница1/3
Дата конвертации25.03.2015
Размер0.56 Mb.
ТипПримерная программа
источник
  1   2   3


Муниципальное казенное общеобразовательное учреждение

«Средняя общеобразовательная школа с.Прималкинского»

Прохладненского муниципального района КБР




2013 – 2014 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Общие положения

Настоящая программа по алгебре для основной общеобразовательной школы 9 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), примерной программы для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составители Бурмистрова Т.А.– М: «Просвещение», 2009г.)

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.


Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра. Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики,

статистики и теории вероятностей

становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе алгебры 9 класса расширяются сведения о свойствах функций, познакомить обучающихся со свойствами и графиком квадратичной функции; систематизируются и обобщаются сведения о решении целых и дробных рациональных уравнений с одной переменной, формируется умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0; вырабатывается умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; даются понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида; знакомятся обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; вводятся понятия относительной частоты и вероятности случайного события.
Согласно Федерального базисного учебного плана на изучение математики в 9 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии следующее:

  • 3 часа в неделю алгебры, итого 102 часа;

  • 2 часа в неделю геометрии, итого 68 часов.

За счет регионального компонента на курс алгебры добавлен 1 час в неделю, поэтому на год 136 часа (34 недели по 4 часов), из них 9 часов на контрольные работы.
Формы промежуточной и итоговой аттестации:
Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. Учащиеся проходят итоговую аттестацию – ГИА в новой форме.
Уровень обучения – базовый.
Отличительные особенности рабочей программы по сравнению с примерной:

В программу внесены изменения: уменьшено или увеличено количество часов на изучение некоторых тем. Сравнительная таблица приведена ниже.



Раздел

Количество часов

в рабочей программе




^ Примерная программа

Добавлено

Всего

Повторение материала за курс 8 класса

0

5

5

1. Свойства функций. Квадратичная функция

23

2

25

2. Уравнения и неравенства с одной переменной

14

4

18

3.Уравнения и неравенства с двумя переменными

18

7

25

4. Прогрессии

14

4

18

5. Элементы комбинаторики и теории вероятностей

15

2

17

6. Повторение

18

10

28

Всего

102

34

136

Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.
Срок реализации рабочей учебной программы – один учебный год.
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.
Учебно-методический комплекс учителя:
Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2010 – 2012 год.

Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н.Г. Миндюк, С.Б. Суворова..— М.: Просвещение, 2010г.

Уроки алгебры в 9 классе: кн. для учителя / В.И. Жохов, Л.Б. Крайнева. — М.: Просвещение, 2010 г..

Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2011

Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение, 2010г.

Учебно-методический комплекс ученика:
Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2011-2012 год.

Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2011-2012 г.
^ Планируемые результаты освоения учебных и междисциплинарных программ
Формирование универсальных учебных действий
Личностные универсальные учебные действия

В рамках когнитивного компонента будут сформированы:

• историко-географический образ, включая представление о территории и границах России, её географических особенностях; знание основных исторических событий развития государственности и общества; знание истории и географии края, его достижений и культурных традиций;

• образ социально-политического устройства — представление о государственной организации России, знание государственной символики (герб, флаг, гимн), знание государственных праздников;

• знание положений Конституции РФ, основных прав и обязанностей гражданина, ориентация в правовом пространстве государственно-общественных отношений;

• знание о своей этнической принадлежности, освоение национальных ценностей, традиций, культуры, знание о народах и этнических группах России;

• освоение общекультурного наследия России и общемирового культурного наследия;

• ориентация в системе моральных норм и ценностей и их иерархизация, понимание конвенционального характера морали;

• основы социально-критического мышления, ориентация в особенностях социальных отношений и взаимодействий, установление взаимосвязи между общественными и политическими событиями;

• экологическое сознание, признание высокой ценности жизни во всех её проявлениях; знание основных принципов и правил отношения к природе; знание основ здорового образа жизни и здоровьесберегающих технологий; правил поведения в чрезвычайных ситуациях.

В рамках ценностного и эмоционального компонентов будут сформированы:

• гражданский патриотизм, любовь к Родине, чувство гордости за свою страну;

• уважение к истории, культурным и историческим памятникам;

• эмоционально положительное принятие своей этнической идентичности;

• уважение к другим народам России и мира и принятие их, межэтническая толерантность, готовность к равноправному сотрудничеству;

• уважение к личности и её достоинству, доброжелательное отношение к окружающим, нетерпимость к любым видам насилия и готовность противостоять им;

• уважение к ценностям семьи, любовь к природе, признание ценности здоровья, своего и других людей, оптимизм в восприятии мира;

• потребность в самовыражении и самореализации, социальном признании;

• позитивная моральная самооценка и моральные чувства — чувство гордости при следовании моральным нормам, переживание стыда и вины при их нарушении.
В рамках деятельностного (поведенческого) компонента будут сформированы:

• готовность и способность к участию в школьном самоуправлении в пределах возрастных компетенций (дежурство в школе и классе, участие в детских и молодёжных общественных организациях, школьных и внешкольных мероприятиях);

• готовность и способность к выполнению норм и требований школьной жизни, прав и обязанностей ученика;

• умение вести диалог на основе равноправных отношений и взаимного уважения и принятия; умение конструктивно разрешать конфликты;

• готовность и способность к выполнению моральных норм в отношении взрослых и сверстников в школе, дома, во внеучебных видах деятельности;

• потребность в участии в общественной жизни ближайшего социального окружения, общественно полезной деятельности;

• умение строить жизненные планы с учётом конкретных социально-исторических, политических и экономических условий;

• устойчивый познавательный интерес и становление смыслообразующей функции познавательного мотива;

• готовность к выбору профильного образования.

Выпускник получит возможность для формирования:

• выраженной устойчивой учебно-познавательной мотивации и интереса к учению;

• готовности к самообразованию и самовоспитанию;

• адекватной позитивной самооценки и Я-концепции;

• компетентности в реализации основ гражданской идентичности в поступках и деятельности;

• морального сознания на конвенциональном уровне, способности к решению моральных дилемм на основе учёта позиций участников дилеммы, ориентации на их мотивы и чувства; устойчивое следование в поведении моральным нормам и этическим требованиям;

• эмпатии как осознанного понимания и сопереживания чувствам других, выражающейся в поступках, направленных на помощь и обеспечение благополучия.
^ Регулятивные универсальные учебные действия

Выпускник научится:

• целеполаганию, включая постановку новых целей, преобразование практической задачи в познавательную;

• самостоятельно анализировать условия достижения цели на основе учёта выделенных учителем ориентиров действия в новом учебном материале;

• планировать пути достижения целей;

• устанавливать целевые приоритеты;

• уметь самостоятельно контролировать своё время и управлять им;

• принимать решения в проблемной ситуации на основе переговоров;

• осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия; актуальный контроль на уровне произвольного внимания;

• адекватно самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как в конце действия, так и по ходу его реализации;

• основам прогнозирования как предвидения будущих событий и развития процесса.

Выпускник получит возможность научиться:

• самостоятельно ставить новые учебные цели и задачи;

• построению жизненных планов во временно2й перспективе;

• при планировании достижения целей самостоятельно, полно и адекватно учитывать условия и средства их достижения;

• выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ;

• основам саморегуляции в учебной и познавательной деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей;

• осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;

• адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи;

• адекватно оценивать свои возможности достижения цели определённой сложности в различных сферах самостоятельной деятельности;

• основам саморегуляции эмоциональных состояний;

• прилагать волевые усилия и преодолевать трудности и препятствия на пути достижения целей.
^ Коммуникативные универсальные учебные действия

Выпускник научится:

• учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;

• формулировать собственное мнение и позицию, аргументировать и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;

• устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;

• аргументировать свою точку зрения, спорить и отстаивать свою позицию не враждебным для оппонентов образом;

• задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнёром;

• осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь;

• адекватно использовать речь для планирования и регуляции своей деятельности;

• адекватно использовать речевые средства для решения различных коммуникативных задач; владеть устной и письменной речью; строить монологическое контекстное высказывание;

• организовывать и планировать учебное сотрудничество с учителем и сверстниками, определять цели и функции участников, способы взаимодействия; планировать общие способы работы;

• осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать;

• работать в группе — устанавливать рабочие отношения, эффективно сотрудничать и способствовать продуктивной кооперации; интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми;

• основам коммуникативной рефлексии;

• использовать адекватные языковые средства для отображения своих чувств, мыслей, мотивов и потребностей;

• отображать в речи (описание, объяснение) содержание совершаемых действий как в форме громкой социализированной речи, так и в форме внутренней речи.

Выпускник получит возможность научиться:

• учитывать и координировать отличные от собственной позиции других людей в сотрудничестве;

• учитывать разные мнения и интересы и обосновывать собственную позицию;

• понимать относительность мнений и подходов к решению проблемы;

• продуктивно разрешать конфликты на основе учёта интересов и позиций всех участников, поиска и оценки альтернативных способов разрешения конфликтов; договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов;

• брать на себя инициативу в организации совместного действия (деловое лидерство);

• оказывать поддержку и содействие тем, от кого зависит достижение цели в совместной деятельности;

• осуществлять коммуникативную рефлексию как осознание оснований собственных действий и действий партнёра;

• в процессе коммуникации достаточно точно, последовательно и полно передавать партнёру необходимую информацию как ориентир для построения действия;

• вступать в диалог, а также участвовать в коллективном обсуждении проблем, участвовать в дискуссии и аргументировать свою позицию, владеть монологической и диалогической формами речи в соответствии с грамматическими и синтаксическими нормами родного языка;

• следовать морально-этическим и психологическим принципам общения и сотрудничества на основе уважительного отношения к партнёрам, внимания к личности другого, адекватного межличностного восприятия, готовности адекватно реагировать на нужды других, в частности оказывать помощь и эмоциональную поддержку партнёрам в процессе достижения общей цели совместной деятельности;

• устраивать эффективные групповые обсуждения и обеспечивать обмен знаниями между членами группы для принятия эффективных совместных решений;

• в совместной деятельности чётко формулировать цели группы и позволять её участникам проявлять собственную энергию для достижения этих целей.
^ Познавательные универсальные учебные действия

Выпускник научится:

• основам реализации проектно-исследовательской деятельности;

• проводить наблюдение и эксперимент под руководством учителя;

• осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;

• создавать и преобразовывать модели и схемы для решения задач;

• осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

• давать определение понятиям;

• устанавливать причинно-следственные связи;

• осуществлять логическую операцию установления родовидовых отношений, ограничение понятия;

• обобщать понятия — осуществлять логическую операцию перехода от видовых признаков к родовому понятию, от понятия с меньшим объёмом к понятию с большим объёмом;

• осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

• строить классификацию на основе дихотомического деления (на основе отрицания);

• строить логическое рассуждение, включающее установление причинно-следственных связей;

• объяснять явления, процессы, связи и отношения, выявляемые в ходе исследования;

• основам ознакомительного, изучающего, усваивающего и поискового чтения;

• структурировать тексты, включая умение выделять главное и второстепенное, главную идею текста, выстраивать последовательность описываемых событий;

• работать с метафорами — понимать переносный смысл выражений, понимать и употреблять обороты речи, построенные на скрытом уподоблении, образном сближении слов.

Выпускник получит возможность научиться:

• основам рефлексивного чтения;

• ставить проблему, аргументировать её актуальность;

• самостоятельно проводить исследование на основе применения методов наблюдения и эксперимента;

• выдвигать гипотезы о связях и закономерностях событий, процессов, объектов;

• организовывать исследование с целью проверки гипотез;

• делать умозаключения (индуктивное и по аналогии) и выводы на основе аргументации.
^ Предметные универсальные учебные действия

Математика. Алгебра. Геометрия.

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

^ Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
^ Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чисел;

• оперировать понятием квадратного корня, применять его в вычислениях.

^ Выпускник получит возможность:

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

^ Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

^ Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

^ Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

^ Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

^ Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

^ Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

^ Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

^ Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

^ Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда.
^ Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять понятие развёртки для выполнения практических расчётов.
^ Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

^ Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограмм-мов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

^ Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

^ ОСНОВНОЕ СОДЕРЖАНИЕ
Повторение, 5 часов

Глава 1. Квадратичная функция, 25 часов

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция у=ах2+вх+с, ее свойства и график. Простейшие преобразования графиков функций. Функция у=хn. Определение корня n-й степени. Вычисление корней –й степени.
Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квад­ратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.
^ Глава 2. Уравнения и неравенства с одной переменной, 18 часов
Целое уравнение и его корни. Биквадратные уравнения. Дробные рациональные уравнения. Решение неравенств второй степени с одной переменной. Решение неравенств методом интервалов.
Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограни­чиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.
Глава 3. Уравнения и неравенства с двумя переменными и их системы, 25 часов
Уравнение с двумя переменными и его график. Графический способ решения систем уравнений. Решение систем содержащих одно уравнение первой, а другое второй степени. Решение текстовых задач методом составления систем. Неравенства с двумя переменными. Системы неравенств с двумя переменными.
Глава 4. Прогрессии, 18 часов

Последовательности. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.
Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.
^ Глава 5. Элементы комбинаторики и теории вероятнос-тей, 17 часов

Примеры комбинаторных задач. Перестановки, размещения, сочетания. Относительная частота случайного события. Равновозможные события и их вероятность.
Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.
Повторение. Решение задач по курсу алгебры 7-9 , 28 ч
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы по темам:


  • Нахождение значения числового выражения. Проценты.

  • Значения выражения, содержащего степень и арифметический корень.

  • Прогрессии.

  • Вычисления по формулам комбинаторики и теории вероятностей.

  • Тождественные преобразования рациональных алгебраических выражений.

  • Тождественные преобразования дробно-рациональных и иррациональных выражений.

  • Линейные, квадратные, биквадратные и дробно-рациональные уравнения.

  • Решение текстовых задач на составление уравнений.

  • Решение систем уравнений.

  • Решение текстовых задач на составление систем уравнений.

  • Линейные неравенства с одной переменной и системы линейных неравенств с одной переменной.

  • Неравенства и системы неравенств с одной переменной второй степени.

  • Решение неравенств методом интервалов.

  • Функция, ее свойства и график.

  • Соотношение алгебраической и геометрической моделей функции.


Требования к уровню подготовки обучающихся в 9 классе
В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овла­девали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


В результате изучения курса алгебры 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=, у=ах2+bх+с, у= ах2+n у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики,
статистики и теории вероятностей


уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.



  1   2   3



Похожие:

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconПримерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconРабочая программа по математике для V класса составлена на основе федерального компонента государственного стандарта основного общего образования
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconРабочая учебная программа по геометрии 10 т класс
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт распределение учебных часов по разделам...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconРабочая учебная программа по геометрии 11 е класс
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт распределение учебных часов по разделам...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconРабочая программа по алгебре и началам анализа 10 класс
Колмогорова А. Н для 10-11 классов «Алгебра и начала анализа» общеобразовательных учреждений. Программа конкретизирует содержание...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconЗубкова Ирина Вадимовна учитель истории и обществознания, педагог дополнительного образования. Квалификационная категория: первая г. Грязи 2013 г
Рао, доктора педагогических наук Л. Н. Боголюбова. Рабочая программа конкретизирует содержание предметных тем Государственного образовательного...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconПрограмма Л. Н. Боголюбов умк: Л. Н. Боголюбов, Н. Ф. Виноградова, Н. И. Городецкая. Обществоведение.: 6 класс
Программы основного общего образо­вания по обществознанию Л. Н. Боголюбова. Рабочая программа конкретизирует содержание пред­метных...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconПрограмма Л. Н. Боголюбов умк: Л. Н. Боголюбов, Н. Ф. Виноградова, Н. И. Городецкая. Обществоведение.: 9 класс
Программы основного общего образо­вания по обществознанию Л. Н. Боголюбова. Рабочая программа конкретизирует содержание пред­метных...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconКоличество часов по учебному плану: 204. Общее количество часов в неделю: 6 Содержание курса русского языка в 5 классе предполагает изучение следующих разделов
М. Т. Баранов, Т. А. Ладыженская, Н. М. Шанский (М.: Просвещение,2009) в количестве 6 часов в неделю. Программа раскрывает содержание...
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса iconПояснительная записка 1Статус документа
Она разработана в целях конкретизации содержания образовательного стандарта с учетом межпредметных и внутрипредметных связей, логика...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©ex.kabobo.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации